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ABSTRACT 

The F-35B Joint Strike Fighter is critical to the future of Marine Corps fixed-wing 

aviation.  The ability to man the Joint Strike Fighter with properly trained pilots is as 

important as the development and acquisition of the aircraft itself.  This thesis examines 

the Integrated Training Center (ITC) model, which simulates the training process in order 

to determine expected time to train for Marine pilots trained at Eglin Air Force Base, 

Florida.  First, we demonstrate that weather is an important factor in the Integrated 

Training Center model.  Legal and financial constraints restrict modification of the ITC 

model, so we create a replica that is statistically similar to the flight management process 

found in that model.  We then modify the replica model to more accurately reflect reality.  

This improved model uses a continuous-time Markov process to model weather.  We 

show that the independent weather assumption in the ITC model is inappropriate.  We 

recommend modifying the ITC model to reflect good weather as a resource necessary to 

conduct a flight, and one that is only intermittently available.  Ultimately, these tools will 

be provided to decision makers so that they may implement these changes to make  

better decisions. 
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THESIS DISCLAIMER 

The reader is cautioned that the computer programs presented in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and 

logical errors, they cannot be considered validated.  Any application of these programs 

without additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

The F-35B Joint Strike Fighter (JSF) is a critical step in the future of the  

Marine Corps’ fixed-wing aviation.  This aircraft (A/C) will make a significant difference 

in combat effectiveness and its success will play a vital role in the future of the  

Marine Corps.  The ability to man the JSF with properly trained pilots is as important as 

the development and acquisition of the A/C itself. 

Time to Train (TTT) estimates have a major influence on manpower requirements 

for pilot training, as instructor pilots (IPs) and trainees are a large part of the costs 

involved in the training cycle.  If TTT estimates are inaccurate, there could be 

considerable delays that negatively impact the manning of operational squadrons.  These 

delays could adversely affect the combat effectiveness of the Marine Corps  

(Rabachault, 2011). 

The Marine Corps needs to understand the length of time required to train pilots 

in order to appropriately assign resources to this process and make accurate plans.  The 

Integrated Training Center (ITC) model simulates the training process in order to 

determine TTT (Kenny, 2010).  The ITC model is useful, but contains many flaws that 

significantly impact the training estimates. 

TTT estimates depend upon many factors, both controllable and uncontrollable.  

The ITC model takes a set of input data and simulates the induction, training, and 

graduation of student pilots until all pilots have completed their respective courses.  

Student TTT is one output of the ITC model, which assesses the training capacity and 

acquisition requirements for the first JSF ITC currently located at Eglin Air Force Base, 

Florida. 

The ITC model is essentially a series of queues that approximate the resources 

students utilize in the training process and accounts for the time students spend actually 

using those resources and waiting to use them.  Students are serviced by various training 

resources such as classrooms, A/C, and simulators.  Students progress through the 

training process using those available resources.  If resources are not available, they go 
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into waiting queues until the resources are on hand.  The model records student entry and 

exit times as object attributes for both students and resources (Kenney, 2009).  The ITC 

currently uses an independent Bernoulli trial, similar to a dice roll, to approximate flight 

cancellations due to weather.  This could result in one student’s flight being cancelled 

within a few minutes of another pilot taking off. 

The ITC model is written in Model Simulator Software (MODSIM III) and is 

proprietary software; therefore, the user cannot make modifications.  In order to analyze 

the effects of weather changes on the model, it is necessary to replicate the ITC model’s 

use of weather.  This thesis uses Simkit, a discrete-event simulation software, to replicate 

the weather portion of the ITC model.  It also uses Simkit to simulate the weather in a 

different model using a stochastic process, which will hold up entire groups of students 

during bad weather.  This thesis takes a more realistic approach when modeling weather-

related flight cancellations. 

This thesis investigates the ITC model through experimental design and 

regression analysis.  Summer and winter cancellation rates are some of the most 

important factors in the current model.  This research confirms that weather is important 

in the ITC model and that small changes in bad weather rates using the current model can 

result in significant delays in TTT. 

A replica model, which is statistically similar to the flight management process 

found in the ITC model, is created in Simkit.  This model is necessary because we cannot 

modify the ITC model directly.  We analyze the weather piece and verify that summer 

and winter cancellation rates are important in this model.  Then, we analyze resource 

utilization rates to ensure we are not overusing resources.  No resource limitations are 

placed on this model helping in the analysis of A/C usage to determine if usage levels are 

acceptable or not.  This creates an issue, in that the estimates shown here are lower 

bounds.  This thesis shows that slight changes in weather can significantly impact the 

TTT for each pilot. 

An improved model, similar to the replica model, is also created in Simkit.  This 

model contains a continuous-time Markov process that models the state of the weather.  
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In this model, the weather is treated as a resource that is only intermittently available.  

The process whereby the weather changes approximate the four seasons is flexible 

enough to model the weather of most geographical locations.  This model is also 

analyzed for resource utilization.  This resource utilization is found to be much more 

volatile than in the replica model.  This resource utilization can greatly impact the TTT 

estimates generated using the ITC model.  Finally, with this model, we demonstrate that 

modeling the effect of weather on flights as independent Bernoulli trials is inappropriate 

and leads to inaccurate training time estimates. 

We recommend modifying the ITC model to reflect good weather as a resource, 

necessary to conduct a flight, and one that is only intermittently available.  One way to do 

this is to use a continuous-time Markov process, as we demonstrate in  

this thesis. 
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I. INTRODUCTION 

If the F-35B is canceled, the service has no other option for replacing its 
aging Harrier jets capable of operating off smaller ships. . . .  That would 
eventually leave the nation with half as many ships deploying fighter jets.  
. . .  There is not a plan B. . . .  This is bigger than the Marine Corps,  
[General Amos] concluded. 

—G.C. Kovach, 2010, p. 1 

A. OVERVIEW 

The F-35B Joint Strike Fighter (JSF) is a critical step in the future of  

Marine Corps’ fixed-wing aviation.  This aircraft (A/C) will make a significant difference 

in combat effectiveness and its success will play a vital role in the future of the  

Marine Corps.  The ability to man the JSF with properly trained pilots is as important as 

the development and acquisition of the A/C itself. 

In January 2011, Defense Secretary Robert Gates expressed concern with the 

increasing costs associated with the F-35 program when he said, “The culture of endless 

money that has taken hold must be replaced by a culture of restraint.”  He singled out the 

Marine Corps’ variant F-35B and ordered “a two-year probation,” saying it “should be 

canceled” if corrections are unsuccessful (Rabachault, 2011, p. 1). 

With an estimated budget of over $380 billion, the JSF is one of the most 

expensive procurement programs ever in the Department of Defense.  Time to Train 

(TTT) estimates have a major influence on manpower requirements for pilot training, as 

instructor pilots (IPs) and trainees are a large part of the costs involved in the training 

cycle and need to be addressed properly.  If underestimates are not addressed early, then 

there will be considerable delays that negatively impact the manning of operational 

squadrons.  These delays will also have adverse effects on the combat effectiveness of the 

Marine Corps (Rabachault, 2011). 

The Marine Corps needs to understand the length of the training cycle in order to 

effectively train F-35B pilots.  The Integrated Training Center (ITC) model simulates the 

training process in order to determine TTT (Kenny, 2010).  The ITC model is useful, but 
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there are many flaws with it that may significantly impact the training estimates it 

produces for the Marine Corps (Lucas, 2010). 

B. BACKGROUND 

The JSF program is the Department of Defense’s focal point for the next- 

generation strike A/C weapon system for the Navy, Air Force, Marine Corps, and our 

allies.  The JSF has three variants:  the F-35A Conventional Takeoff and Landing A/C 

used by the Air Force, the F-35B Short Takeoff and Vertical Landing used by the  

Marine Corps, and the F-35C used by the Navy for Carrier Launch and Recovery.  This 

research focuses on the F-35B. 

1. Training Process 

The ITC model takes a set of input data and simulates the induction, training, and 

graduation of student pilots until all of them have completed their respective courses.  

Student TTT is an output of the ITC model.  TTT depends upon the syllabus written into 

the ITC model or the information changed directly in the Graphical User Interface (GUI).  

Delays to the training process occur when resources are not available for use.  The ITC 

model assesses the training throughput and capacity for the first JSF ITC located at  

Eglin Air Force Base (AFB), Florida, as well as for other training facilities abroad.  It is 

also being used as a guide for resource acquisitions for the training center. 

2. ITC Model 

The ITC model is a Monte Carlo queuing-based model that uses uniform 

distributions as a basis for all random behavior.  The model is implemented in Model 

Simulator Software (MODSIM) III, which is software that enables an object-oriented, 

discrete-event simulation framework (Goble, 1997).  Queues of students are serviced by 

various training resources such as classrooms, A/C, and simulators.  Students progress 

through the training process using the available resources.  If resources are not available, 

they go into waiting queues until the resources are on hand.  The queues use a  

first-in-first-out system.  Wait queues hold students who are waiting to train, while 

resources are held by resource queues that are available for use.  Student entry and exit 
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times are recorded as object attributes for both students and resources.  The following 

resources are accounted for using the ITC model (Kenney, 2009): 

• Training Devices:  Devices such as the Full Mission Simulators (FMS) 
help students to gain a better understanding of the A/C before stepping 
into the cockpit. 

• Classrooms:  Rooms are set apart and can accommodate up to 12 pilots 
per class.  These rooms are used mostly for annual training and some 
general knowledge instruction. 

• Self-Paced, Computer-Based Training Work Stations:  These are only 
available if a space is available.  Most of the preflight instruction is based 
upon these programs.  Once a certain level is reached, an event-based test 
is given to ensure the learning has taken place. 

• Mission Brief/Debrief Rooms:  These are smaller rooms to be utilized 
before and after training flights or FMS flights, in order to allow feedback 
to pilots on areas for improvement. 

• Military IPs:  IPs are the instructors who teach the pilots as they go 
through their training.  They are limited to the number of training A/C 
available.  For new A/C, like the F-35B, the IPs also need training. 

• Military Maintainer Instructors:  These instructors are limited to 
approximately 30 hours of training per week, with another 10 hours set 
aside for counseling, syllabus and course content review, lesson 
preparation, and other instructor-related duties. 

• Contract Academic IPs:  Contracted instructors who will be relied upon 
for expertise and to conduct a majority of the training during the start of 
the program until IPs are able to be created from within. 

• Training A/C:  A/C purchased specifically for use at the training facility. 

• Runways and Training Airspace:  These resources, such as military 
operating areas, low-level routes, scored target ranges, etc., will have 
availability only during specific times.  They will be utilized as necessary 
when pilots are ready to fly the actual A/C. 

The ITC currently uses an independent Bernoulli trial to simulate weather.  As a 

student enters the flight queue a random number is generated, and if that number falls 

below the weather cancellation rate, he is not allowed to fly.  Each student that enters the 

flight queue is tested independently of anyone else.  This could result in student A being 

cancelled for weather and a few minutes later student B is allowed to fly (Lucas, 2010). 
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3. Discreet-Event Simulation (DES) and Simkit 

Weather is not represented correctly in the ITC model.  The model is written in 

MODSIM III and is proprietary software; therefore, the user cannot modify it.  In order to 

analyze the effects of weather changes on the model, it is necessary to replicate the ITC 

model’s use of weather in the flight event.  Simkit is a DES modeling language that was 

developed at the Naval Postgraduate School.  It uses the Java programming language for 

all its object-oriented programming (Buss, 2001).  This thesis uses Simkit to replicate the 

weather portion of the ITC model.  It also uses Simkit to simulate an improved weather 

model using a stochastic approach to weather.  These two models create a way of 

comparing improvements to the weather model.  This thesis goes into further details 

about the Simkit models in Chapters III and IV. 

C. OBJECTIVES 

Using design of experiments (DOE) and simulation, this thesis studies the ITC 

model and the impact of weather on the expected TTT for Marine pilots being trained at  

Eglin AFB.  This thesis analyzes the effects of extending the model to more realistically 

account for weather.  These changes will greatly improve the ability of the model to give 

better TTT estimates. 

This thesis confirms that weather is important in the ITC model.  It describes a 

Simkit model that is statistically similar to the flight event process found in the ITC 

model.  It also develops a Simkit model that more accurately models weather.  The 

assumption of weather being modeled as an independent Bernoulli trial is inappropriate 

and leads to inaccurate TTT estimates.  We recommend modifying the ITC model to 

reflect weather as a resource, necessary to conduct a flight, and one that is only 

intermittently available.  Ultimately, these tools will be provided to decision makers so 

that they may implement these changes to make better decisions, based upon more 

accurate TTT estimates. 
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D. RESEARCH QUESTIONS 

First, how significant is weather to the current model?  Second, how sensitive are 

TTT estimates with respect to weather?  Finally, a comparison of the proposed Simkit 

model to the current model is done to see if the proposed changes are statistically 

significant.  This comparison is done using linear regression analysis, which allows a 

quantitative comparison of distinct models. 

E. SCOPE, LIMITATIONS, AND DATA ASSUMPTIONS 

1. Scope 

The scope of this thesis is to determine the significance of weather on the current 

model, in order to improve the TTT estimates that the ITC model produces.  We do this 

using robust analysis in order to decide whether the difference between the current model 

estimates are statistically different from estimates using the improved model. 

2. Limitations 

The most important limitation of this thesis is that researchers cannot change the 

ITC model.  The model is written in MODSIM III and the model itself is proprietary 

software.  Changing the model requires the Marine Corps to incur excess costs.  The 

Marine Corps can either pay a contractor to make changes, or buy the rights to the model 

and make the changes themselves.  Funds for doing so, however, are not available at  

this time. 

3. Model Assumptions 

a. ITC Model Assumptions 

This thesis assumes the latest plan for resource allocation is up-to-date and 

accurate.  The plan is written into Course of Action (COA) 4, which consists of 14 

syllabai, A/C induction schedules, IP induction schedules, and other basic resources 

required for this model to run.  Using the latest COA gives one the opportunity to study  
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TTT according to the most recent resource allocation numbers provided by the  

Marine Corps.  For a more comprehensive list of the model assumptions, see  

Appendix A. 

b. Simkit Model Assumptions 

The first assumption is that the Simkit replica is a good distillation of the 

MODSIM model and that it correctly imitates the model as it stands.  The MODSIM code 

is not accessible due to its proprietary nature.  Therefore, we ensure that a similar arrivals 

process is achieved while producing similar output in all other areas.  Another 

assumption of the model is that approximations made about past weather conditions are 

good predictors for future events.  Also, that the efforts placed into approximating 

weather are sufficient for Eglin AFB. 

F. LITERATURE REVIEW 

Mustafa Azimetli’s (2008) thesis, “Simulation of Flight Operations and Pilot 

Duties in LANTIRN Fighter Squadrons using Simkit,” uses a weather simulation to 

determine how often they can keep their Low-Altitude Navigation and Targeting  

Infra-Red for Night LANTIRN fighter squadrons up and running.  His analysis uses a 

weather simulation that splits the weather into three categories of flight.  The three 

categories allow certain pilots to fly, depending upon their training levels, etc.  He uses a 

Markov chain process to create current weather categories.  Similarly, this thesis uses a 

Markov chain process to generate weather.  However, this thesis uses probabilities to go 

from good to bad weather, and vice versa, moving students in and out of a weather wait 

queue.  All pilots are in a training environment and the breakup of the experience 

categories is not a necessary piece.  Azimetli uses METAR reports that are simulated 

from weather reports in Turkey.  Although he uses a similar weather simulation, his 

simulation evaluates the use of the LANTIRN A/C.  This thesis gives more realistic 

estimates to the current TTT estimates given by the ITC model. 

Axtell, Axelrod, Epstein, and Cohen (1996) coin the term docking, for making 

two simulation models match.  In their case study, they compared two different models to 

see if they could accomplish the same task.  Similarly, this thesis compares two different 
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models—scripted in different software, by different authors, and at a different time—to 

accomplish the same thing.  The ability to compare models is an important component of 

this thesis; however, it differs in its attempts as it does not replicate the entire model, but 

only a small part of it. Docking as a thread of research is primarily found in the agent-

based modeling community and, to our knowledge, this is the first application to discrete 

event simulation. 

This thesis develops a Simkit version of the flight event process and docks it to 

the ITC model.  Using Azimleti’s thesis as a point of departure, we modify the Simkit 

model to more appropriately model the effects of weather on flight operations. 

G. THESIS OUTLINE 

Chapter II discusses the ITC model makeup.  It also discusses the analysis that 

shows how important weather is to this model.  Chapter III is the Simkit replica of the 

A/C flight event found in the ITC model.  We discuss how it runs and show the analysis 

of how it functions.  Chapter IV reviews the proposed changes to the weather model 

using Simkit.  Analysis is done to illustrate how weather changes affect resource 

utilization in this improved Simkit model.  It also does a comparison analysis of the two 

different Simkit models showing the significance of the proposed changes.  Chapter V 

provides the conclusions, recommendations, and suggestions for further research using 

this model. 
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II. ITC MODEL AND WEATHER 

A. ITC MODEL 

The ITC model covers the entire life cycle of a student pilot, from inception to 

graduation.  It takes the pilots through a set of events, controlled by syllabi, using 

MODSIM III, which is a DES modeling software program that controls the flow of 

students through the training cycle (Kenny, 2010).  The time it takes to go through this 

training process is TTT. 

As explained in Chapter I, there are many inputs and outputs.  The inputs are 

described as variables and can be found in Table 1.  In the ITC model, all of the variables 

found in Table 1 can be manipulated in the simulation.  However, most of them are 

prewritten into a COA worksheet that is then read into the model using text files.  These 

text files create the scenario and control a number of factors running the ITC model.  

Some of these text files are the syllabus schedules that pilots go through.  Others are the 

plan for purchasing A/C and utilization of IPs.  All of the 36 variables are written into the 

text files and read into the ITC model at the instantiation of the run.  The GUI screens, 

depicted in Appendix B, allow the user to access the individual variables.  In this way, 

changes can be made to the variables without touching the individual text files.  There are 

a lot of output measures that can be analyzed.  In this chapter, we focus upon the most 

significant of these outputs, mean TTT. 
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Table 1.   All of the decision and noise variables controllable by the GUI. 

Decision Variables Noise Variables 
Unclassified Classrooms Winter Cancellation Rates 
Classified Classrooms Summer Cancellation Rates 
Interactive Courseware Work Stations Probability of Mechanical Failure 
FMSs Time for Repairs 
Mission Readiness Trainer (MRT) Flight Simulator A/C Flight Preparation Time 
Mission Planning Station A/C Refly Rate 
Brief/Debrief Rooms Simulator Refly Rate 
A/C Two-Seat FMS Planning Time 
A/C Systems Maintenance Trainer FMS Briefing Time 
Weapons Load Trainer FMS Debriefing Time 
Ejection System Maintenance Trainer MRT Planning Time 
Engine Trainer MRT Briefing Time 
Outer Mold Line Train Lab MRT Debriefing Time 
Military Operating Area Slots  
Low Levels  
Target Slots  
Runways  
IPs  
Contract Instructors  
Training Days/Year  
Hours in a Day  
Choice of Syllabus  
Induction of IPs  

 

The ITC model estimates the amount of time pilots take to go through the training 

cycle, while encountering a number of possible delays.  As this model is written, pilots 

must advance from one training event to the next in order—no skipping or changing of 

events is allowed.  If delays occur, they occur at the time the event is scheduled.  Weather 

is just one of the delays that can occur during the training cycle.  This thesis will show 

that weather is an important factor in this model. 

B. ITC WEATHER 

The A/C flight event is one of many events simulated in the ITC model.  The 

flight event is read in as part of the syllabus found on the text files.  The flight events are 

the basis of this analysis, as it is the only location where weather affects the TTT 
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estimates.  Each syllabus has a certain number of hours that it requires pilots to fly.  The 

flowchart for the flight event and weather is found in Figure 1.  The flowchart shows the 

process that a student goes through in order to fly a scheduled event.  It also shows the 

approximate times that it takes in order to go through the briefs and possible  

maintenance cycle. 

 

Figure 1.   The flowchart on which the ITC model bases its A/C flight events. 

Weather is a very simple component of the ITC model.  It uses a system that 

divides the year into two different seasons—summer and winter.  Both the summer and 

winter cancellation rates can be adjusted using the Scenario User interface found in 

Appendix B.  The effect of weather is simulated using a Bernoulli trial.  A uniform 

random number is drawn and compared to the designated cancellation rate.  If the number 

is greater than the cancelation rate percentage during that season, then the A/C is allowed 

to fly.  Those that fall under the rate are then placed in the weather wait queue for four 

hours while the system continues on.  As already discussed, other students coming into 

the queue directly after the one that is cancelled are checked with a similar Bernoulli trial 

and will either fly or go into a weather wait queue independent of what happened to the 

student prior. 
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C. DESIGN OF EXPERIMENTS (DOE) 

1. Measure of Effectiveness (MOE) and Factor Selection 

An MOE is “a qualitative or quantitative measure of the performance of a model 

or simulation or a characteristic that indicates the degree to which it performs the task or 

meets an operational objective or requirement under specified conditions” (MOE, 1998, 

p. 136).  The MOE used in this section is mean TTT. 

The variables are usually divided into three groups:  decision factors, noise 

factors, and artificial factors.  The decision factors are those that are controllable in the 

real world; the noise factors are uncontrollable real-world factors; and the artificial 

factors are those specific to simulation, such as initial state and warm-up periods 

(Sanchez, 2000).  Table 1 is a description of the variables and which ones are used in the 

DOE for this analysis.  The key variables highlighted in Table 1 are summer and winter 

cancelation rates, A/C and simulator refly rates, probability of mechanical failure rates, 

time to repair A/C, and A/C preparation time.  The weather factors are vital to the 

analysis in this thesis.  The others are chosen because planning does not control their 

outcome.  All the decision variables are input automatically according to the latest COA, 

and, although they affect the overall TTT, keeping them constant allows one to analyze 

the most important data in the uncontrollable factors.  By adjusting the noise variables, 

we are better able to understand how much effect uncontrollable variables will have on 

the overall TTT.  This knowledge helps decision makers create better training schedules 

by allotting an appropriate amount of time for the training.  It also gives them the ability 

to make a case for necessary resources. 

2. Nearly Orthogonal Latin Hypercubes (NOLHs) 

An initial design of seven factors makes it impossible to run a model with the 

entire set of possible parameter space.  A full-factorial design, with 10 factors and 10 

levels each, would require 10 billion design points.  In an example using 20 replications, 

200 billion runs of simulation would be required.  In the event that each simulation took 

one second, the entire experiment would take over 6,300 years to run.  A much more 

efficient design is needed (Sanchez, 2008). 
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To construct a more efficient design, we use an NOLH experimental design 

spreadsheet developed by Dr. Susan M. Sanchez at the Naval Postgraduate School (NPS) 

in 2005.  A NOLH design facilitates an investigation into the domain of numerous 

factors.  These designs allow one to see the effects of one factor independent of other 

factors.  They also maintain the benefits of orthogonality, such as independence of 

estimates of variables, while providing the added benefit of space-filling properties 

giving superior analytical performance.  This benefit allows one to explore a model with 

more depth.  In this thesis, we evaluate seven factors, as shown in Table 2.  To cover 

more of the design space, the (N0 )11
33 sheet is used with a wrapping technique (Cioppa, 

2002).  This gives a more appropriate response surface to test for nonlinear behavior.  It 

is important to note that these designs lose very little in orthogonality, which means that 

we stay away from multicollinearity issues (Cioppa & Lucas, 2007). 

Table 2.   NOLH design spreadsheet with factor names and levels (9 of 65). 

low level 0 0 0 1 0 0 0 
high level 60 60 99 24 40 40 4 
decimals 0 0 0 1 0 0 0 

factor name WxCanc SxCanc ProbA/Cfail TimeToRep FightRefly SimRefly NextSortie 
  60 6 43 5.3 35 25 3 
  54 60 12 9.6 19 8 3 
  53 26 90 4.6 1 24 3 
  34 53 99 10.3 38 6 3 
  56 2 46 6 28 29 2 
  58 56 31 7.5 18 9 1 
  41 28 96 6.8 0 26 2 
  32 41 93 8.9 36 10 1 
  39 15 22 13.2 29 13 0 

 

Using the (N0 )11
33  sheet and wrapping it once results in 66 design points.  In order 

to ensure independence, the center design point is deleted from the second group of 

numbers, leaving a total of 65 design points.  These 65 design points are then run through 

the ITC model with 50 replications each, totaling 3,250 runs of simulation, with  
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120 pilots going through each run, giving information on 390,000 pilots in 14 different 

syllabi.  Of the 14 syllabi, two are upgrades and the TTT levels are significantly shorter.   

The space-filling properties of the DOE are shown in Figure 2.  The points in the 

matrix are distributed evenly across the matrix.  This strengthens the design and allows 

access to 2nd order effects. 

 

Figure 2.   The space-filling properties of the 7-factor DOE using a scatterplot matrix. 

D. DATA ANALYSIS 

Before a full analysis on the data is performed, it is necessary to do preliminary 

work on the output information.  First, we take into account the warm-up and cool-down 
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periods of the ITC model.  To account for these periods, 150 days is chopped from the 

beginning and end of the data.  Those points that fall in the first 150 days and end in the 

last 150 days are not used in the analysis.  Next, the output of the run is broken down into 

many categories.  An example of the output can be found in Table 3.  The first column 

describes which pilot (1-120) was training and the next column gives a class number, 

depending upon the start date.  The third column is the syllabus each pilot flew, the fourth 

is the time they started that syllabus, and the fifth is the completion date.  Next, it gives 

the overall TTT; followed by calendar weeks; the approximate number of months, weeks, 

and days according to the syllabus start time; and scheduled no training days.  Then, it 

gives the study planning time, followed by flight hours and simulation hours of use in the 

syllabus. 

Table 3.   Output spreadsheet from simulation runs (11 of 390,000 rows shown). 

 

 

The information found in the output is specified by many different class types, as 

seen in Table 3.  After some simple analysis of all of the different classes, we are able to 

show that each class performs similarly.  This thesis uses a single class to describe 

weather and its effects.  This was to limit the repetition in graphs and charts.  In order to 

choose a single class, we had to analyze which class would be the most appropriate to 

generalize all classes over.  Of the 14 syllabi, the least similar syllabi are the upgrades, 

the initial cadre group, and the other three syllabi that lead into the two upgraded syllabi.  

Due to their shortened length of training days, they would not be helpful in predicting 

overall TTT for a student going through a normal training cycle. 



 16 

Table 4 shows summary statistics for all 14 of the different classes based upon 

TTT; the first six are the syllabi explained above.  That left eight syllabi to decide from.  

Being as they are all similar to the others, we choose one with an average length of 

training days and the largest number of students going through it.  The syllabus 

TX3_B2.0.txt has 58,500 pilots train using its syllabus under differing design points  

and replications. 

Table 4.   Summary statistics on the 14 different syllabi.  Highlighted is the class used in 
this analysis. 

 

To better understand the response variable, we show a histogram with some of the 

summary statistics in Figure 3.  This shows that the mean TTT is about 121 days to train 

and the standard deviation is about 10 days.  The response variable is somewhat 

symmetric with what seem to be a couple of outliers.  The outliers seem to be caused by a 

high rate of A/C failure, as well as an extreme amount of time to repair. 
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Figure 3.   Distribution of the response variable. 

An ordinary least squares (OLS) model is fit to mean TTT with the seven factors, 

to include all second-order interactions.  Stepwise corrected Akaike Information Criterion 

(AICc) forward helps determine those factors that are important (SAS, 2009).  Figure 4 

shows the progression of R2 for the AICc stepwise model selection process.  The vertical 

line shown on the graph depicts the best fit model according to the AICc.  The adjusted 

R2 is about 0.90, as shown in Figure 5.  This does not mean that we have the best fit 

model.  In fact, it may indicate that we over fit the model.  Using the AICc method, we 

kept 14 of the original 28 significant terms.  More analysis is vital in order to decipher if 

we have chosen a good model. 
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Figure 4.   R2 progression with number of significant factors. 

 

Figure 5.   Summary of fit on the linear model using mean TTT as the MOE. 

The sorted parameter estimates help one to identify the important factors in the 

model and how they rank accordingly.  Summer and winter cancellation rates are both 

among the most highly statistically significant factors in the model.  The OLS model, 

shown in Figure 6, illustrates that both summer and winter cancellation rates are 

important in the model.  Every five percentage-point change in either summer or winter  
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cancellation rates equates to approximately a one-day increase in mean TTT.  For 

example, increasing the summer cancellation rate from 0.2 to 0.25 increases expected 

mean TTT by approximately one day. 

 

Figure 6.   Sorted parameter estimates using mean TTT as the MOE. 

E. VALIDATION 

It is important to evaluate the residuals versus the predicted plot in order to 

validate the model.  Figure 7 depicts the predicted mean training days’ values versus the 

residuals.  The points seem to have no particular pattern, demonstrating constant 

variance.  This supports the first assumption that there is likely constant variance. 

 

Figure 7.   Mean TTT residuals by predicted plot. 

According to the qq Normal plot, we can see that there is some granularity, as 

well as being a little right skewed, as shown by the bar chart in Figure 8.  Overall, it 

seems to show that the points are approximately normally distributed. 
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Figure 8.   Normal QQ plot of residuals with histogram. 

F. CONCLUSIONS 

Weather is important in the ITC model as currently modeled.  Using linear 

regression analysis, we show that winter and summer cancellation rates are significant 

factors.  We use a model that maximizes adjusted R2 without over-fitting the model.  

Through the use of residual analysis, the assumptions of normality are tested.  We 

conclude that the model is a valid model.  Everything found supports the claim that 

weather is important in the ITC model.  All analysis in this thesis is demonstrated through 

the exclusive use of JMP Statistical Discovery software.1 

  

                                                 
1 Additional information about the JMP Statistical Discovery software can be found at www.jmp.com. 
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III. REPLICA SIMKIT MODEL 

A. SIMKIT MODEL DESIGN 

The purpose of this thesis project is to examine the manner in which weather is 

modeled in the ITC model, to propose improvements, and to quantify the benefits.  The 

most effective way to accomplish this is to modify the ITC model directly, and compare 

the legacy and improved models.  However, the ITC model cannot be modified for legal 

and financial reasons.  A replica of the ITC model flight event management process is 

created and implemented in Simkit.  This is the important part, because it is the only 

place weather has an effect on TTT. 

A flow chart of the Simkit replica model that recreates the A/C flight events found 

in the ITC model is shown in Figure 9.  The flow in the ITC model and the replica model 

are similar.  The primary difference between the replica model and the ITC model is that 

the replica model has unconstrained resources.  For example, the model is not limited to a 

certain number of A/C, brief rooms, or IPs. 

 

Figure 9.   Flowchart of the Simkit replica model. 

The Simkit replica model is implemented in 10 different Java classes.  An event 

graph diagram of this model is found in Appendix C.  The following is a brief description 

of how the model works.  First, an arrival process governs the arrival of flights into the 

system.  In the current implementation, the interarrival times are exponentially 
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distributed, which is an appropriate assumption given the necessity to abstract away from 

all nonflight-related evolutions on the syllabi.  One of the parameters over which we data 

farm is the shape parameter. 

Next is the Flight and FlightCreator process.  As flights arrive according to the 

arrival process, the Flight Creator class creates Flight objects.  A flight object possesses 

the number of students involved in the flight, the length of the flight, as well as the time 

at which the flight object entered the system.  The number of students required for each 

flight is either one or two.  Similarly, the flights on a given syllabus, for a particular 

course of study, may range from approximately one to three hours.  In order to maintain a 

sense of generality, the FlightCreator determines the number of students and duration for 

a flight according to probability distributions.  A simple Bernoulli trial is used to 

determine the number of students, while a Triangular distribution, with a lower bound of 

0.5 and an upper bound of 3.0, is used to determine duration.  The probability of the 

Bernoulli trial and the mode of the Triangular distribution are varied according to the 

experimental design. 

If there is sufficient daylight remaining to fly an event, the system checks the 

weather according to a Bernoulli trial.  The probability of the Bernoulli trial depends 

upon the season.  The SeasonChanger class simply alternates between summer and 

winter, thereby enabling the WaitCollector class to utilize the appropriate weather 

cancellation rate.  If the random number it generates falls below the assigned cancellation 

rate for that period, flights are sent into a weather wait queue. 

In reality, a flight that is delayed due to weather may find that the required 

training range is no longer available.  Similarly, in the ITC model, a pilot may emerge 

from a weather delay and have to wait for an IP to become available.  In order to account 

for this phenomenon in the replica model, every flight that emerges from the weather 

delay queue experiences a Bernoulli trial to determine if an additional delay will be 

applied.  If so, an additional delay of from 1 to 5 days is imposed in order to simulate the 

possibility of delays exacerbated by the weather delay.  This additional wait time  

 

 



 23 

accounts for some of the time delays associated with the unavailability of resources.  

Students, for whom additional flight wait time is imposed, do not undergo another 

weather check. 

The BriefClass processes the remainder of the flight event.  It manages the 

utilization of resources such as brief rooms, IPs, A/C in use, and completed flights.  At 

various points in the flight evolution, the brief rooms, IPs, and A/C are released.  Finally, 

the ITCModelExe class instantiates all the relevant objects and manages the entire 

process.  This class listens to all the other processes while recording the output 

information. 

Other important features in this model are the FIleIO, 

ReadCommaSeperatedInput, and the OutputCatcher processes.  The first two read in 

Comma Separated Value (.csv) sheets and convert them into arrays that are used for 

farming later.  The first sheet, DOE.csv, is the design spreadsheet that has all the factors 

and their assigned values.  The second sheet is Seed.csv, which is a seeding worksheet.  

This worksheet provides the ability to replicate the experiment elsewhere, using a 

different machine, and still get the same values.  The OutputCatcher process allows 

access to the output.  It captures the data on a separate screen and saves it to a comma 

separated text file.  This allows JMP to access the information for processing. 

B. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

It is important to replicate the original model closely, in order to obtain useful 

results.  This model does not recreate the entire ITC model.  It recreates the flight process 

portion of the model only.  This is the only place where weather has an effect upon the 

training process found in the ITC model.  We compare the number of arrivals from the 

ITC model to the number of arrivals coming through this model, and we find that the 

arrival process is similar to the ITC model’s arrival process. 

Resources are not restricted in this model.  In order to overcome this weakness, an 

additional delay is placed upon some of the flights that are delayed due to weather.  This 

rescheduling delay is simulated by an additional delay time of up to five days, as 

explained in the WaitCollector process. 
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C. EXPERIMENTAL DESIGN 

In the interest of time and simplicity, the model assumes unlimited resources such 

as briefing rooms, IPs, and A/C required.  All resources are measured, which helps 

decision makers understand resource usages.  Resource utilization rates are analyzed as 

well, to show differences between the replica model and the model found in Chapter IV. 

The MOE for this model is slightly different than the MOE for the ITC model.  

This model does not estimate total mean TTT because the model only includes flight 

events.  Instead of mean TTT, it uses Mean_DWQ.  DWQ is a response variable found in 

Table 6; it is the mean delay in wait queue by design point. 

The list of decision variables is also different from the Simkit model.  This model 

does not limit the resources, so many of the decision variables are output instead of input.  

Table 5 is a list of decision and noise variables found in the replica model. 

Table 5.   List of Decision and Noise Variables in the Simkit replica model. 

Decision Variables Noise Variables 
Arrival Rates Winter Cancellation Rates 
Number of Students per Flight Summer Cancellation Rates 
Flight Duration In-Brief Times 
IP Break Time Debrief Time 
 Aircraft Flight Preparation Time 
 Post Flight Preparation Time 
 Maintenance Time 
 Additional Time 

 

This thesis implements the 12 factors listed in Table 5 in a (N0 )16
65
 NOLH design.  

It replicates each design point 50 times, for a total of 3,250 runs.  We use common 

random numbers for each replication, so as to reduce variance due to random number 

selection between runs (Law & Kelton, 2000).  The simulation completes this experiment 

in approximately 15 minutes on a desktop computer, with a Pentium 4 central processing 

unit, 3.6 gigahertz speed, and 3.0 gigabytes of random access memory.  Common random  
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numbers are used to decrease the variance caused by simulation (Law & Kelton, 2000).  

Appendix D is a scatterplot matrix that shows the space-filling properties of our  

design space. 

D. ANALYSIS 

The model exports its output data in a comma separated text file, which facilitates 

import into JMP.  A sample of the output is shown in Table 6. 

Response variables include DWQ, mean and maximum number of students in the 

weather wait queue, as well as the mean and maximum number of students in the wait 

queue.  Additional response variables include max A/C in use, maximum IPs in use, and 

maximum brief rooms in use. 

The simulation runs for a three-year period, similar to the ITC model.  This model 

is not limited by resources, but it is able to show resource usage.  It also accounts for 

resources, to give decision makers the ability to identify resource utilization rates. 

Table 6.   A part of the output file that is saved as a .csv file. 

rep dp time wxWaitQ_mean wxWaitQ_max DWQ wxWaitQ_delay_max wxWaitPersQ_mean 
0 0 36000 0.67 8 8.9 144 1.31 
0 1 36000 0.89 10 9.84 149 1.12 
0 2 36000 0.73 8 8.56 144 1.2 
0 3 36000 0.53 7 7.47 144 0.6 
0 4 36000 0.13 7 1.5 138.42 0.21 
0 5 36000 0.66 10 9.99 147.62 0.72 
0 6 36000 0.29 6 3.76 138.83 0.52 

 

A histogram and summary statistics of DWQ are shown in Figure 10.  The mean 

response is 14.3 hours, with a standard deviation of 7.2 hours.  All mean delay times fall 

at or below 33 hours. 
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Figure 10.   Distribution of the response variable Mean_DWQ. 

A partition tree is used to explore the data and identify important factors.  The 

first four splits of the tree are all weather-related variables, WxCanc and SxCanc, which 

confirms their relative importance.  Adjusting weather at different levels allows one to 

account for the majority of the variation in the response variable.  These five splits 

(shown in Figure 11) result in an R2 of approximately 0.8. 

 

Figure 11.   Partition tree with Mean_DWQ as a response variable. 

The partition tree also keeps track of R2 at every split and Figure 12 is a graphical 

representation of the R2 at every split.  As seen below, very little predictive power is 
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gained by going beyond the 5th split.  This helps to determine a stopping point.  The 

steps in Figure 11 only show up to five splits, whereas Figure 13 gives the history out to 

nine steps. 

 

Figure 12.   Partition tree split history. 

An OLS model is fit to Mean_DWQ with all 12 factors, to include second-order 

interactions.  With Mean_DWQ as the MOE and using the AICc method, 17 of the 

original 79 factors enter the model, which results in an adjusted R2 of 0.993, as shown in 

Figure 13. 

 

Figure 13.   Summary of fit for OLS model using Mean_DWQ as MOE. 

The sorted parameter estimates show how important the factors are in this model.  

Analyzing the sorted parameter estimates shown in Figure 14 reveals that SxCanc and 

WxCanc rates affect Mean_DWQ significantly.  Increasing weather rates from, say,  
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0.3–0.35, increases the mean delay time by about 1.5 hours.  The AddTime parameter is 

the probability that a flight experiences a delay, in addition to a weather delay.  The sign 

is positive, as expected.  For every 0.1 increase in the probability of added time, 

approximately two additional hours are spent in the weather wait queue.  In addition, it is 

unsurprising that WxCanc*AddTime and SxCanc*AddTime are the two most important 

interactions.  As the weather cancellation rates increase, the addTime becomes more 

important.  The weather delays are expected to be important, but arrival rates (Lambda) 

do not make as significant an impact as expected. 

 

Figure 14.   Sorted parameter estimates of the OLS model using Mean_DWQ as MOE. 

E. VALIDATION 

1. Regression Validation 

Figure 16 shows the residuals by predicted plot, which demonstrates constant 

variance.  The correlation of estimates coefficients matrix shows that no correlation 

above 0.17 exists between any of the terms, which indicates there are no issues with 

multicolinearity.  These estimates fall well below 0.9, which is the level Hamilton (1992) 

discusses as high correlation.  A qq-plot of the residuals is shown in Figure 15, as is the  
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residual by predicted plot and goodness-of-fit test.  All of these indicate that the errors are 

sufficiently distributed in a normal manner.  This model satisfies the necessary 

assumptions for an OLS model. 

 
Figure 15.   Mean_DWQ Residuals by Predicted Plot, QQ normal plot of residuals with 

histogram and goodness-of-fit test. 

2. Maximum Aircraft Utilization 

One of this model’s important simplifying assumptions is that resources such as 

briefing rooms, IPs, and A/C in use are unconstrained.  In order to evaluate the impact of 
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these assumptions, it is necessary to examine the areas of the design space where any of 

these resources exceed their maximum capacities.  This section examines 

Max_A/CInUse, which is the mean of the maximum number of A/C flown by design 

point.  A fully operational training squadron is only assigned 20 A/C and only a portion 

of those are expected to fly on any given day.  Therefore, it is reasonable to conclude that 

for areas of the design space where Max_A/CInUse exceeds 20, the estimate of 

Mean_DWQ is a lower bound.  This is because in the ITC model, as in reality, flights that 

are delayed due to weather may subsequently be delayed because the aircraft originally 

intended for the flight is reassigned to a different flight.  Figure 16 gives the distribution 

of the Max_A/CInUse for the 65 design points.  Appendix E shows the distributions of 

the Max A/C, Max brief rooms, and the Max IPs in use over the 3,250 data points. 

 

Figure 16.   Distribution of the Max_A/CInUse by 65 design points. 

These distributions acknowledge how each resource is utilized and whether there 

is enough of that resource available.  If there are insufficient resources available, then 

longer delays will occur.  The additional time added in the model attempts to account for 

the lack of resource restriction found in this model. 

An OLS model is fit to Max_A/CInUse with all 12 factors, to include all  

two-way interactions.  Stepwise AICc is employed to ascertain the appropriate factors.  

This results in an adjusted R2 of 0.984 (shown in Figure 17).  The sorted parameter 

estimates are also shown in Figure 17.  The most important parameter is %Studs.  As the 

proportion of flights with two students increases, i.e., as %Studs decreases, Max A/C In 
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Use increases.  With A/C usage as our parameter, it makes sense that the number of 

students flying, and how often they are flying, is near the top of the predictive 

parameters. 

 

Figure 17.   Summary of fit and sorted parameter estimates for OLS model with 
Max_A/CInUse as MOE. 

This model satisfies the assumptions of an OLS model, as revealed in Figure 18.  

This figure shows the residuals by predicted plot, which implies constant variance.  It 

also shows the qq norm plot, which suggests the errors are normal.  A goodness-of-fit test 

concludes that H0 cannot be rejected because it results in a p-value of 0.47. 
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Figure 18.   Residuals vs. predicted plot, qq norm plot of residuals with histogram, and 
goodness-of-fit test. 

For 75.7% of the replications, Max A/C In Use is less than or equal to 20 A/C.  

This is important because normal usage rates will not allow more than 20 A/C to fly, and 

most likely something less than this.  The reality is that it is impossible to use more A/C 

than the squadron is assigned, so Mean_DWQ discussed in this chapter are low estimates, 

and larger delays are expected. 
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F. CONCLUSIONS 

The replica model demonstrates that weather is important in that it makes an 

impact on the Mean_DWQ.  The replica model correctly replicates the ITC model’s 

Flight Events.  The two models observed react similarly under similar points of interest.  

The two models agree with importance of terms, and both models suggest that a 

significant amount of time is added to either TTT or DWQ as weather cancellation  

rates increase. 

The thesis also examines resource utilization rates.  These rates will become more 

significant as a comparison is done between the replica Simkit model and the improved 

Simkit model discussed in Chapter IV. 



 34 

THIS PAGE INTENTIONALLY LEFT BLANK 



 35 

IV. IMPROVED SIMKIT MODEL 

A. SIMKIT MODEL DESIGN 

The improved Simkit model is similar to the replica model, but the one primary 

difference is the way weather is modeled.  Instead of using independent Bernoulli trials to 

simulate the effect of weather, a stochastic process approach is used.  A simple, 

continuous-time Markov process that alternates between good and bad weather is used.  

In essence, good weather is a resource that has limited availability.  When it is available, 

all flights may use it; but when it is unavailable, all flights must wait until the  

weather changes. 

The improved Simkit model flowchart, shown in Figure 19, illustrates the 

differences between the replica model and the improved model.  The weather check 

occurs in the same place as the replica model.  If it is bad weather, every student that 

comes into the queue goes directly into the weather wait queue, and when the weather 

changes from bad to good, all students are released from the wait queue.  All students are 

checked to see if they have enough time to fly that day.  If not, they go into an overnight 

wait queue and they have to recheck weather upon their release in the morning. 

 

Figure 19.   Flowchart of the improved Simkit model. 
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The improved Simkit model uses 11 different Java classes.  Appendix C shows 

the event graph diagrams for this model.  Most of them are the same as the Simkit replica 

model.  This section explores the differences between them. 

The first change is the Season Changer.  In this model, SeasonChangerV2 puts the 

weather into four seasons, vice two.  The duration of the seasons are varied in the 

DOE1.csv spreadsheet.  Three of the four season durations are input as number of days in 

the design spreadsheet.  The fourth is found by taking 360 days and subtracting the other 

three seasons’ duration times. 

Next is WheatherChanger, which uses a Markov process to transition from good 

to bad weather and back again.  The duration of good and bad weather during two of the 

seasons are created using exponential distributions with Lambda rates, thus creating a 

continuous-time Markov process (Ross, 2007).  During the other two seasons, the 

DOE1.csv spreadsheet gives parameters that increase or decrease these Lambda values. 

The WaitCollectorV2 is similar to the WaitCollector; however, there is no longer 

an independent Bernoulli trial to check the weather.  All flights coming into the weather 

checker during bad weather are delayed at least until the weather changes back to good.  

All students who go through the weather wait queue check to see if additional time is 

required, as explained in Chapter III. 

Finally, the ITCModelExeV2 class works the same as the ITCModelExe.  There 

are a few basic changes to the listener events, but essentially it controls the entire process. 

B. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

The same limitations and assumptions carry into this model from the replica 

model.  An additional assumption has to do with the weather.  This thesis relies upon 

weather data that is not location-specific, as found in the DOE1.csv.  It allows for the 

duration of the seasons and the duration of bad and good weather to fluctuate in the 

design.  This construct is flexible enough to be able to model the weather in nearly any 

geographic location. 
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C. DESIGN OF EXPERIMENTS (DOE) 

There are many similarities between the DOE found in Chapter III and the DOE 

here in Chapter IV.  The MOE is the same.  The list of variables is slightly different, as 

shown in Table 7.  There is an increased number of Noise Variables and, instead of 

summer and winter cancelation rates, we now have good and bad weather durations. 

Table 7.   List of Decision and Noise Variables in the improved Simkit model. 

Decision Variables Noise Variables 
Arrival Rates (Lambda0) In-Brief Times 
Number of Students per Flight Debrief Time 
Flight Duration Aircraft Flight Preparation Time 
IP Break Time Postflight Preparation Time 
 Maintenance Time 
 Additional Time 
 Good Weather Duration (Lambda1) 
 Bad Weather Duration (Lambda2) 
 Winter Duration Adjustment (delta1) 
 Winter Duration Adjustment (delta2) 
 Summer Duration Adjustment (delta3) 
 Summer Duration Adjustment (delta4) 
 Spring Duration (time1) 
 Summer Duration (time2) 
 Fall Duration (time3) 

 

The 19 factors listed in Table 7 are used in a (N0 )22
129  NOLH design, which 

increases the number of design points to 129.  Each design point is replicated 50 times, 

for a total of 6,450 runs.  The seeds used with this model are the same as the ones used in 

the replica model.  This use of common random number seeds reduces the variations 

caused by simulation (Law & Kelton, 2000).  The entire experiment runs in 

approximately 25 minutes on a desktop computer with a Pentium 4 central processing 

unit, 3.6 gigahertz speed, and 3.0 gigabytes of random access memory.  The results are 

collected using the same collection process found in Chapter III.  The max pairwise 

correlation of coefficient estimate is 0.65. 
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D. ANALYSIS 

The output of this model is the same as the output from Chapter III, except for the 

design points, which are slightly different.  Figure 20 is a histogram of the primary 

response variable.  Mean DWQ is 8.8 hours, with a fairly high Standard Deviation of  

5.2 hours.  All mean delay times fall at or below 25.5 hours.  The fact that the mean 

weather delay went down is a bit surprising. 

 

Figure 20.   Distribution of the response variable Mean_DWQ. 

The important factors in this model are found using a partition tree.  There are 11 

splits required before anything other than a property of weather enters the model.  The 

first six splits are shown in Figure 21.  An R2 of about 0.8 is obtained with these six 

splits.  Weather factors account for the majority of the variation in the response variable. 
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Figure 21.   Partition tree with Mean_DWQ as a response variable. 

An OLS model is fit to the new data using all 19 factors, with all two-way 

interactions.  Stepwise AICc forward is used to help determine the factors that enter the 

model.  This results in an adjusted R2 of about 0.963, as shown in Figure 22.  It is found 

that 16 of the original 19 factors, and 21 interaction terms, for a total of 37 terms out of 

the 191 possible, are statistically significant. 

 

Figure 22.   Summary of fit for OLS model using Mean_DWQ as MOE. 
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To understand the importance of each factor, we examine the sorted parameter 

estimates shown in Figure 23.  Good and Bad in Figure 23 refers to Lambda1 and 

Lambda2 from Table 7.  Also, BadInc and GoodDec refer to delta2 and delta1 from 

Table7.  It is clear that weather affects are extremely important in this model.  The 

additional time shows that it increases the overall DWQ by an average of 7.5 hours. 

 

Figure 23.   Sorted parameter estimates of the OLS (10 of 37 variables are shown). 

E. VALIDATION 

1. Mean DWQ 

This model satisfies the necessary OLS assumptions for a model.  Figure 24 

shows the residuals by predicted plot, which is not as clear as the previous plots.  There 

seems to be a little shape to the points, but not enough to throw out the assumption of 

constant variance.  The errors seem normally distributed, as shown by the qq-plot and the 

p-value from the goodness-of-fit test is around 0.94.  Both of these are found in  

Figure 24 (Hamilton, 1992). 
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Figure 24.   Mean_DWQ Residuals by Predicted Plot, QQ normal plot of residuals with 

histogram and goodness-of-fit test. 

2. A/C Utilization 

Figure 25 gives the distribution of the Mean (aircraftInUse_max), which is the 

mean of the maximum number of A/C flown at each repetition by the 129 design points.  

Appendix F shows the distributions of the Max A/C, Max brief rooms, and the Max IPs 

in use over the 6,450 data points.  As is evident, the number of A/C utilized using this 

approach is significantly higher than the replica model.  This suggests that wait times are 
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more affected by resources than with the replica model.  Mean A/C utilization is around 

30 A/C, vice a mean of 18 A/C from the previous model. 

 

Figure 25.   Distribution of the Max_A/CInUse by design point. 

Next, an OLS model is fit using the Max_A/CInUse, by design point, which 

results in an adjusted R2 of 0.9533 (shown in Figure 26).  The sorted parameter estimates 

are shown in Figure 27.  The %Studs worked the same in this model as in the previous 

replica model. 

 
Figure 26.   Summary of fit for the Max_A/CInUse OLS model. 

 
Figure 27.   Sorted parameter estimates Max_A/CInUse  

(10 of the 37 variables shown). 
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This model also satisfies the OLS assumptions, as shown in Figure 28.  The 

residuals by predicted plot implies constant variance.  The qq norm plot had only minor 

granularity and some slight heavy tails, suggesting some outliers, but the errors seem 

normal (Hamilton, 1992). 

 

Figure 28.   Residual by predicted, QQ norm plot, and goodness-of-fit test. 

The extreme Max number of A/C in use is surprising, so a contour plot is created 

to get a better understanding of what the surface looks like.  The contour plot  
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(Figure 29) shows that for a majority of the time, fewer than 30 A/C are used under 

normal operations.  The normal expected %Studs, according to the current syllabi, is 

greater than 0.7.  The contour plot clearly shows that when %Studs is above 0.7 the 

system typically uses less than 30 A/C and that the numbers fall closer to the 20 A/C 

assigned to the squadron. 

 

Figure 29.   Contour plot for Mean of the Max_A/C against %Studs and  
arrival Lambda. 

F. MODEL COMPARISON REPLICA SIMKIT VS. IMPROVED SIMKIT 

1. DOE for the Comparison 

One of the most obvious ways in which the ITC model diverges from reality is the 

assumption that weather affects all flights independently.  Under this assumption, it is 

possible for two flights to arrive within minutes of each other, and for one to experience 

good weather and the other to experience a delay.  To properly examine the effect of this 

assumption on the response variables of interest, it is necessary to set up a design that 
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allows the improved model to have the same weather cancellation rates as the replica 

model.  Table 8 shows the design for the replica model. 

Table 8.   Replica model design. 

WinterCanx SummerCanx All Other Factors’ Default Weather Canx Rate 
0.1 0.1  See Table 10 0.1 
0.2 0.2  See Table 10 0.2 
0.3 0.3  See Table 10 0.3 
0.4 0.4  See Table 10 0.4 
0.5 0.5  See Table 10 0.5 
0.6 0.6  See Table 10 0.6 

 

To compare the two models against each other, the design uses a single rate for 

weather cancellations, as seen in Tables 8 and 9.  In the long run, a weather cancellation 

rate for the replica model of, say, 0.2, will result in approximately 20% of all flights 

being delayed due to weather.  For the improved model, by manipulating Good_Lambda 

and Bad_Lambda, we can achieve similar ratios of bad weather to good weather.  For 

example, the second row of Table 9 results in bad weather approximately 20% of  

the time. 

It is not clear, however, what the average duration of the good or bad weather 

should be.  We code a value known as base, to facilitate comparison along this margin.  

For example, with a base of 50 hours, a ratio of 10 hours of expected bad weather and  

40 hours of expected good weather yields a long-term weather cancellation rate of 0.2.  

Similarly, a ratio of 20 hours of expected bad weather and 80 hours of expected good 

weather also yields an approximate weather cancellation rate of 0.2.  We select base 

levels of 50, 100, 150, and 200 hours.  While time prevents us from determining the 

correct base, we are able to characterize its effect on the result. 

Finally, all effects of seasonal changes were removed for the purposes of this 

experiment.  The only difference between the simulations based upon this design is the 

way weather affects flights.  The replica model uses a Bernoulli trial, while the improved 

model uses a continuous-time Markov process. 
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Table 9.   Improved model design.  (Base is the base number of hours for weather.) 

 

All the other factors are held constant at default values for both models.  The 

default values are shown in Table 10.  Lambda0 is the arrival rate, and %Stud is the 

number of students flying single or in a group of two.  Flight Duration, Brief Time, 

DeBrief Time, IP Break, Pre Flight, Post Flight, and Maint Time are all in hours.  

ProbAdd is placed at 0.0, which essentially drops the additional time that is added in the  

previous runs. 

  

Good Lambda Bad Lambda Base 
All Other 
Factors’ 
Default 

Hours 
Bad 

Weather 
Canx Rate 

Hours 
Good 

0.022222222 0.2 50  Tables 10 & 11 5 0.1 45 
0.025 0.1 50  Tables 10 & 11 10 0.2 40 

0.028571429 0.066666667 50  Tables 10 & 11 15 0.3 35 
0.033333333 0.05 50 Tables 10 & 11 20 0.4 30 

0.04 0.04 50 Tables 10 & 11 25 0.5 25 
0.05 0.033333333 50 Tables 10 & 11 30 0.6 20 

0.011111111 0.1 100 Tables 10 & 11 10 0.1 90 
0.0125 0.05 100 Tables 10 & 11 20 0.2 80 

0.014285714 0.033333333 100 Tables 10 & 11 30 0.3 70 
0.016666667 0.025 100 Tables 10 & 11 40 0.4 60 

0.02 0.02 100 Tables 10 & 11 50 0.5 50 
0.025 0.016666667 100 Tables 10 & 11 60 0.6 40 

0.007407407 0.066666667 150 Tables 10 & 11 15 0.1 135 
0.008333333 0.033333333 150 Tables 10 & 11 30 0.2 120 
0.00952381 0.022222222 150 Tables 10 & 11 45 0.3 105 

0.011111111 0.016666667 150 Tables 10 & 11 60 0.4 90 
0.013333333 0.013333333 150 Tables 10 & 11 75 0.5 75 
0.016666667 0.011111111 150 Tables 10 & 11 90 0.6 60 
0.005555556 0.05 200 Tables 10 & 11 20 0.1 180 

0.00625 0.025 200 Tables 10 & 11 40 0.2 160 
0.007142857 0.016666667 200 Tables 10 & 11 60 0.3 140 
0.008333333 0.0125 200 Tables 10 & 11 80 0.4 120 

0.01 0.01 200 Tables 10 & 11 100 0.5 100 
0.0125 0.008333333 200 Tables 10 & 11 120 0.6 80 
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Table 10.   List of variable defaults that both models have in common. 

Lambda0 %Stud Flight 
Duration 

Brief 
Time 

DeBrief 
Time 

IP 
Break 

Pre 
Flight 

Post 
Flight 

Maint 
Time 

Prob 
Add 

0.065 0.7 1.8 1.75 3.0 1.0 0.5 0.5 1.0 0.0 

 

In this thesis, it is desired to see what differences there are in the model strictly 

due to weather changes.  The additional factors found in the improved model are set to 

ensure that they do not impact the improved model, as seen in Table 11.  The variable 

names and functions are from Table 7.  Deltas are values from 0.0–1.0 and show a 

percentage of change; 1.0 means no change.  Times are in days. 

Table 11.   Variable defaults found only in the improved model. 

Delta1 Delta2 Delta3 Delta4 Time1 Time2 Time3 
1.0 1.0 1.0 1.0 90 90 90 

 

For a proper analysis of variance it is necessary to use the same population in 

different experimental designs, which is what is done with this DOE (Devore, 2009).  

Weather is the only point of variation between the two models.  The weather rates range 

from 0.1-0.6 in both models, while the response variables remain the same. 

2. Analysis of Variance (ANOVA) Tests 

Using the new design, the model’s output is combined into one set of data using 

the concatenate function in JMP.  An indicator variable, Model, denotes the model type.  

For example, a “1” refers to the replica model and a “2” refers to the improved model.  

Another indicator variable, Base, refers to the number of hours used as the base.  A “1” in 

the base refers to the replica model, while all other bases refer to the improved model and 

its base number of hours. 
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A one-way ANOVA, with base as a factor and Mean DWQ as the response 

variable is shown in Figure 30.  The replica model is assigned Base = 1; while the 

improved model has four levels as shown in Table 9.  The highly significant F-statistic 

indicates differences between the models. 

 

Figure 30.   ANOVA of the two different models by Base Value. 

Figure 30 only shows that there are differences, not which levels are different.  A 

Tukey honestly significant difference (HSD) procedure (Devore, 2009) reveals 

significant differences in Mean DWQ between all but the replica model and the lowest 

base level of the improved model.  The results are shown in Figure 31. 
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Figure 31.   Part of the results found under the Tukey HSD procedure. 

A boxplot graphically depicts the differences in the Mean DWQ in Figure 32.  It 

clearly shows that as the base number of hours increases, the Mean DWQ increases as 

well.  Using 150 hours as the base hours for weather will more than double the delay of 

the replica model.  This large of a difference clearly demonstrates that the independence 

assumptions found in the ITC model are faulty and this results in artificially low  

TTT estimates. 
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Figure 32.   Boxplot of the Mean_DWQ at each Base level. 

G. CONCLUSIONS 

Three things are clarified in this chapter.  First, weather is an important factor in 

the improved model.  Second, aircraft utilization behavior indicates that the improved 

model likely underestimates DWQ due to the unconstrained resource assumption.  Third, 

we find evidence that for the same long term probability of weather cancellations, the 

improved model estimates a higher DWQ than the replica model.  Since the estimated 

DWQ for the improved model is likely a lower bound, it is plausible that the replica 

model (and by extension, the ITC model) substantially underestimates the contribution of 

weather delays in the total TTT.  We find that the independent weather assumption in the 

ITC model is faulty and recommend modification. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis answers three questions.  The first question is if weather is an 

important factor in the ITC model.  Chapter II investigates the ITC model through DOEs 

and regression analysis.  Summer and winter cancellation rates are some of the most 

important factors in the ITC model.  This signifies that weather is important in the  

ITC model. 

The next question is how sensitive TTT is with respect to weather.  Chapter II 

also answers this question.  We discover that a slight change in bad weather rates in the 

current model can result in substantial delays in TTT.  For example, a small change in 

weather cancellation rates from 0.05–0.1 results in a full day of delay per pilot.  Small 

changes in weather can drastically impact the TTT for each pilot. 

The bulk of this thesis concentrates on the last question.  If a change is made in 

the current model to more accurately reflect weather, are more accurate TTT estimates 

generated and are they statistically different than the current model?  To answer this 

question, we create two new models—a replica model of the ITC model and an improved 

model, with proposed weather changes in it.  These are necessary to quantify the 

differences that exist between the current way weather is modeled and the  

proposed approach. 

In Chapter III, we analyze the replica model, which replicates the flight event 

from the ITC model.  This is the only event that is affected by weather in the ITC model.  

To ensure that the ITC model and the replica model behave similarly, we compare the 

results of the two models.  The same factors are important in the ITC model and the 

replica model.  The two models also produce similar results in the number of pilots that 

train during similar durations of time.  Resource limitations are not used in the replica 

model, which is one major difference between the two models.  Analysis of the A/C 

usage allows decision makers to determine if the usage is acceptable or not. 
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The improved model found in Chapter IV is similar to the replica model, with an 

improved weather check.  The replica model is modified in Simkit using a  

continuous-time Markov process to change states from bad to good and back again.  The 

season changer uses four distinct weather durations instead of two. 

The importance of weather in the improved model is evaluated using Mean DWQ 

and resource utilization rates.  Mean DWQ is affected significantly by changes in weather 

patterns.  Resource utilization rates increase significantly using the improved model.  We 

demonstrate that these models are different both visually and graphically, using resource 

utilization rates and boxplots. 

Quantifying the differences in these models is important so that decision makers 

know if these changes are worth spending money on.  To quantify the results, a 

controlled DOE is run.  We populate both models with identical input data and seed 

information.  Weather is the only point of variation in the two models, and doing this 

reduces variances caused by simulation.  The analysis evaluates the output of the two 

models using ANOVA techniques.  We also use Student’s t tests to establish that the 

models are different.  The results of these tests validate that there are statistically 

significant differences in the two models.  It proves that the independence assumption 

made in the ITC model is faulty.  This implies that TTT estimates in the original ITC 

model are underestimated and improvements need to be made. 

B. RECOMMENDATIONS 

We show that the independent weather assumption in the ITC model is 

inappropriate.  We recommend modifying the ITC model to reflect good weather as a 

resource, and that it is necessary to conduct a flight, which is only intermittently 

available.  One way to do this is to use a continuous-time Markov process, as we 

demonstrate in this thesis. 
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C. SUGGESTIONS FOR FURTHER RESEARCH 

One area for further research, directly related to the weather, is to fit the model to 

METAR data for Eglin AFB, Florida.  Azimetli’s thesis does this using METAR data for 

the air bases in Turkey. 

Another area of analysis is to evaluate the effect that maintenance has on response 

variables in the current implementation.  Also, it would be important to evaluate the 

effect of extending the ITC model to more realistically account for maintenance. 
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APPENDIX A. ITC MODEL GROUND RULES AND 
ASSUMPTIONS 

1.  Normal operating hours for the Integrated Training Center are 0700-
2300 Monday through Friday.  Briefing rooms and equipment will be 
available to support a 0700 take off and commencement of simulator 
events at 0700.  Simulation of a single shift operation can be accomplished 
by giving all students the same work day start time (i.e. 0800) with a work 
day length of 9 hours (workday ends at 1700). 

2.  Students are inducted evenly throughout the year and commence 
training on Monday of their induction week.  The induction files can be 
adjusted to simulate a non-uniform flow of students into the ITC. 

3.  More than one class may be inducted in the same week. 

4.  The optimum pilot class size for JSF is 6 students.  The current ITC 
classroom design for pilots can accommodate up to 12 students per class.  

5.  Maintainer class size is 12 students. The current ITC classroom design 
for maintainers can accommodate up to 16 students per class. 

6.  Pilot and Maintainer classes are service unique. 

7.  The first flight brief for the day occurs at 0445 for a 0700 takeoff. 

8.  The first flight simulator brief of the day occurs at 0600 for a 0700 
simulator event. 

9.  The student workday is a 9.0 hour day (start to finish) and students are 
assigned a specific “start workday time”.  The intention of the 9.0 hour 
day is to give each student 8.0 hours per day when training can be 
accomplished and 1.0 hour per day for a meal break.  Maintenance 
training for the U.S. Services is accomplished on two shifts. 

10.  In no case will students and instructors be scheduled for a training 
event sooner than 12.0 hours following the completion of their last event 
from the previous day.  As an example, a student and/or instructor who 
finishes a flight debrief at 2200 will not be scheduled for a training event 
before 1000 the next day. 

11.  Maximum crew duty day for instructor pilots is 12.0 hours measured 
from the start of the first training event to engine shutdown.  This ground 
rule is based on a United States Air Force Instruction 11-202 Volume 3 
General Flight Rules, “For single seat aircraft or when only one pilot has 
access to the flight controls, the maximum flight duty period is 12 hours.”  
The normal instructor work day is 9.0 hours. 

12.  Aircraft System Maintenance Trainer events contain 12 students and 2 
instructors. 
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13.  Ejection System Maintenance Trainer events contain 4 students and 1 
instructor. 

14.  Weapons Load Trainer events contain 4 students and 1 instructor. 

15.  Engine module replacement training utilizes training devices provided 
by Pratt & Whitney & General Electric with a ratio of 1 instructor for 
every 4 students. 

16.  A Full Mission Simulator event and flight event will be permitted on 
the same day for the same student if they can both be accomplished within 
the students 9.0 hour work day. 

17.  Flight simulator set up time is 15 minutes for each training event 
(after initial daily startup). 

18.  Students will be permitted to fly more than one flight event on the 
same day.  This only occurs for short flights such as Field Carrier Landing 
Practice events due to work day length restrictions. 

19.  Student planning time for each flight event is 1.0 hour utilizing the 
Mission Planning Station. 

20.  Brief time for training flights is 2.25 hours prior to takeoff. 

21.  Flight debriefs end 3.0 hours after landing. 

22.  Day flights land before 1900 and night flights takeoff after 1900. 

23.  Airborne aggressor requirements are satisfied by Training Squadron 
JSF aircraft flown by Training Squadron instructor pilots. 

24.  After landing, there is a 10% probability the aircraft will require 
repair.  Time to repair is 3.0 hours followed by a 1.5 hour preparation time 
for the next flight event.  These parameters are adjustable via the user 
interface. 

25.  Aircraft turnaround time for the next flight event is 1.5 hours and is 
adjustable via the user interface. 

26.  Cancellations for weather occur after student planning and prior to 
commencement of the flight brief.  Weather cancellation rates are 5% and 
are adjustable via the user interface. 

27.  Re-fly rates for flights and simulator events are 8% and 5% 
respectively and are adjustable via the user interface.  The re-fly decision 
is made at the end of debrief. 

28.  Navy Carrier Qualification (CQ) re-fly rate is 12.5%.  Students who 
repeat CQ will re-fly all simulator and flight events associated with the 
CQ phase of training. 

29.  Students will not re-fly the same flight or simulator event more than 
once. 
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30.  Student planning time for each Full Mission Simulator event is 30 
minutes and is adjustable via the user interface.  Student planning utilizes 
a Mission Planning Station. 

31.  Full Mission Simulator brief time is 60 minutes and is adjustable via 
the user interface. 

32.  Full Mission Simulator debrief time is 30 minutes and is adjustable 
via the user interface. 

33.  The number of Military instructor pilots is equal to the number of 
training aircraft in accordance with direction received from the Services 
and the JSF Program Office.  All airborne flight instruction is provided by 
Military instructor pilots. 

34.  When determining maintainer instructor quantities, actual on-task 
training time for each instructor is limited to approximately 30 hours per 
week.  This allows 10 hours per week of instructor time for student 
counseling, syllabus review, course content review, lesson preparation, 
and completion of other instructor duties. 

35.  After completing a flight debrief, the instructor will not be scheduled 
for a subsequent flight brief for 1.0 hour. 

36.  On each training day, there is a 2% probability that each instructor 
and student may be unavailable for a 2.0 hour time period.  This is 
intended to account for medical appointments and unexpected absences 
for both instructors and students. 

37.  Minimum allowable spacing between flights on the same low-level 
route is 10 minutes. 

38.  Landing aircraft have priority over departing aircraft for the runway. 

39.  There are a total of 246 days per year that are available for.  This 
parameter is selectable via the user interface. 

40.  Students will take a 15-minute break in between non-like training 
events (e.g. simulator to classroom, classroom to simulator, etc.).  Breaks 
during successive classroom training events will be handled by the 
instructor (Kenney, 2009, pp. 8-10). 
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APPENDIX B. ITC MODEL GUI SCREENSHOTS 

1.  Below is the Scenario User Interface, where the user inputs the pilot induction 

schedules and various factors such as Classrooms available (Unclassified, Classified, 

Brief Rooms, FMS, etc.), Runways available, and Weather Cancellation percentages. 
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2.  This is the Instructor User Interface and allows the user to input the number of IPs 

available, Number of Civilian Instructors available, and how the instructors will be used.  

It also allows the user to input the Maintenance resources, which are only important if the 

maintenance piece is on.  It will not be used in this thesis. 
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3.  Finally, the Attribute User Interface.  This is where the user is allowed to manipulate 

factors such as Probability of Mechanical Failure, repair times, number of A/C and Sim 

refly rates, length of the different briefs involved pre and post flight, the number of 

training days available to fly in, and the number of hours available each day to train. 
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APPENDIX C. EVENT GRAPH DIAGRAMS FOR THE REPLICA MODEL AND THE  
IMPROVED MODEL 
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APPENDIX D. CHAPTER III SPACE-FILLING PROPERTIES  
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APPENDIX E. CHAPTER III RESOURCE UTILIZATION  
BAR GRAPHS WITH ASSOCIATED QUANTILES AND MOMENTS 

 

Distribution of the A/C utilization rates from the 3,250 design points. 

 

Distribution of the brief room utilization rates from the 3,250 design points. 

 

Distribution of the IPs’ utilization rates from the 3250 design points. 
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APPENDIX F. CHAPTER IV RESOURCE UTILIZATION  
BAR GRAPHS WITH ASSOCIATED QUANTILES AND MOMENTS 

 

Distribution of the A/C utilization rates from the 6,450 design points. 

 

Distribution of the brief room utilization rates from the 6,450 design points. 

 

Distribution of the IPs’ utilization rates from the 6,450 design points. 
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